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Varieties of Population Structure
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ABSTRACT

Group-structured populations, of the kind prominent in discussions of multilevel selec-
tion, are contrasted with ‘neighbor-structured’ populations. I argue that it is a necessary
condition on multilevel description of a selection process that there should be a nonar-
bitrary division of the population into equivalence classes (or an approximation to
this situation). The discussion is focused via comparisons between two famous prob-
lem cases involving group structure (altruism and heterozygote advantage) and two
neighbor-structured cases that resemble them. Conclusions are also drawn about the
role of correlated interaction in the evolution of altruism.
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1 Introduction

Suppose we have an evolving population that is structured. Perhaps the popu-
lation is divided into ‘demes,’ or into shorter-lived social groups. Perhaps we
have a population of alleles that are collected into diploid genotypes. Other
kinds of structure will be discussed below.1 Suppose we also know that this
population structure matters to evolution, in the following sense: the fitness of
at least some individuals in the population depends on who they interact with,
and the population structure determines who interacts with who.

In both philosophy and biology, considerable attention has been focused on
the question of when, in situations like this, the system is best described in
terms of multiple ‘levels’ of selection. At least sometimes, it seems natural to

1 A population can have several kinds of structure at once, but I will generally ignore that possibility
for the sake of simplicity.
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describe higher-level collections of the lower-level entities as units or targets of
selection in their own right.

One aspect of this discussion has been debate about the status of descriptions
of evolution in structured populations that do not recognize higher levels or
units of selection.2 Suppose someone seeks to describe an evolutionary process
of this kind in terms of selection only at the lower level, and treats the popu-
lation structure as an aspect of the environment in which lower-level selection
occurs. Formally, such a description is possible. But is this description legit-
imate, perhaps even superior, or does it involve some sort of sleight of hand
or distortion of the situation? The literature on this question is now large, and
has not produced consensus.3 In some of the most recent contributions, the
authors have argued strongly for the view that, at least in some crucial cases,
the lower-level description is deeply misleading. Claims of this kind have been
made by Sober and Wilson ([1998]) about behavioral evolution in social groups,
by Lloyd ([2005]) about genic selection, and more generally by Sarkar ([2008]).

My aim in this paper is not to wholly resolve this issue. I present an argument
that casts light on some famous problem cases, however. My strategy is as
follows. I introduce a pair of new cases that are akin to some well-known
and controversial ones. The controversial cases are the ‘trait group’ model of
altruism, and heterozygote advantage in a two-allele genetic model. The new
cases are constructed by substituting neighbor-based interactions for group-
based interactions in each situation. I argue that in the two neighbor-based
cases, a lower-level description of the system is clearly acceptable, and is the
only description that is acceptable.

The differences between the group-based and neighbor-based cases are then
analyzed formally. This comparison is used to draw several conclusions. First,
I try to give more precise content to the intuition that some kinds of effect of
population structure on evolution can properly be described in terms of higher
levels of selection, while other kinds should not. The result of this analysis is
the formulation of a necessary condition on when a selection process should be
described in multilevel terms. This argument draws on work by John Maynard
Smith.

A second set of conclusions concerns the right way to summarize what we
have learned from recent models about the evolution of altruism. Correlated
interaction is widely seen as the key to the evolution of altruism, but this
is sometimes presented as a principle within multilevel selection theory. This
is mistaken, because correlated interaction can be a feature of systems for
which multilevel description is not applicable. In fact, a consideration of the

2 I will not distinguish between questions about ‘levels’ and questions about ‘units,’ though some
authors (e.g. Brandon [1982]) have.

3 Okasha ([2006]) includes a comprehensive survey of work to date.
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special features of neighbor-structured populations puts pressure on the famil-
iar distinction between ‘individual’ and ‘group’ selection.

Lastly, I make distinctions among the arguments that might be given against
lower-level descriptions of the familiar cases discussed in the literature. Some
overly general arguments cannot be sustained, because they would rule out the
use of lower-level accounting in the new cases as well as the familiar ones.

2 Two Kinds of Population Structure

In all the model cases discussed in this paper, we imagine an evolving pop-
ulation of ‘particles’ that reproduce asexually. The term ‘particle’ is intended
as a neutral description that will cover, in different cases below, a variety of
biological entities. Particles come in two types, A and B. We assume a very
large population, nonoverlapping generations, and faithful inheritance of a
particle’s type. The four cases treated in the paper differ with respect to the way
the population of particles is subdivided or organized.

The first case discussed is a familiar one. The particles are seen as individual
organisms that live in social groups that dissolve and reform each generation.
This is the ‘trait group’ life cycle that has been extensively investigated by
Wilson ([1975], [1980]) and others. In each generation, groups form, selection
occurs, and then the groups dissolve at the reproduction step, creating a single
‘pool’ of new individuals from which a new generation of groups is formed.
The rule of group formation might either be random or nonrandom.

Suppose that the fitness of both types, A and B, increases as a function of
the number of A types in an individual’s group. And further, within any mixed
group the B type does better than the A type. The A type is then a kind of
‘altruist.’4

In a case like this, it is formally possible to think about fitness in two different
ways (Kerr and Godfrey-Smith [2002]). One way is to assign fitnesses only to
particles, but do so in a context-sensitive way. A full ‘fitness structure’ for the
system will consist in a set of fitness parameters representing the fitness of A
separately for each of the possible group types that an A individual might find
itself in. The same is done for the B type.5

The other option is to recognize group-level fitnesses, representing the total
outputs or productivities of the various kinds of groups. These group-level
outputs are measured in terms of the average or combined productivity of

4 This form of altruism has been called ‘individual-centered’ or IC altruism in (Kerr et al. [2004]).
This form of altruism can be favored under random group formation provided that further
conditions are met.

5 These are the αi and βi parameters of (Kerr and Godfrey-Smith [2002]). Note that these symbols
are used slightly differently in the Appendix below.
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Figure 1. The trait-group life cycle.

all the particles in the group.6 We then also have a second set of parameters
representing how the output of a mixed group is divided between the two
particle types.7

Both representations of the system are possible and each can be translated
into the other without loss of information. For now, let us not worry about
whether one description is better than the other, in particular cases or in general.
Let us also not worry about what this possibility of multiple forms of description
implies for causal explanation.8 For now, all that matters is that we can assign
fitnesses to groups, and treat these groups as units in a higher-level selection
process. If A succeeds over B, this might be explained in terms of A being
favored by a process of group selection, despite its disadvantage within mixed
groups (Wilson [1980]; Sober and Wilson [1998]).

A number of writers have explored the question of what features a ‘group’
should have in order to be counted as real and nontrivial (Sterelny [1996]; Sober
and Wilson [1998]; Okasha [2006]). Is the mere presence of interaction between

6 This is an ‘MLS1’ description, in the sense of Damuth and Heisler ([1988]). Group productivity
or fitness is the sum of the reproductive output of the constituent particles. All the multilevel
descriptions in this paper are assumed to be of this type.

7 These are the πi and øi parameters in (Kerr and Godfrey-Smith [2002]).
8 In (Kerr and Godfrey-Smith [2002]) we advocate ‘gestalt-switching pluralism.’ Both perspectives

are valuable, as they ‘package’ information differently. The arguments in the present paper are
intended to complement, but not presuppose, our arguments for gestalt-switching pluralism.
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members sufficient, or must groups have some level of ‘cohesiveness’? I bracket
that issue here; my focus is on some formal characteristics of groups, that affect
their role as bearers of group-level fitnesses. These formal characteristics are
shared by paradigmatically ‘real’ groups, such as ant colonies, and also the
usual examples of ‘marginal cases,’ such as temporary coalitions.

I approach the issue by first looking closely at the role played by groups
in the familiar case outlined above. First and most obviously, groups here are
collections of the lower-level particles. The number of groups in the system is
smaller than the number of particles in the lower-level population. The number
of groups is also greater than 1. Each particle is a member of only one group.9

These features make it possible to think of the groups as forming a higher-
level population of competing units that can be assigned fitness parameters.
We can treat the productivities of individual particles as contributions to the
productivities of higher-level entities. As Wilson has argued, the fact that these
groups are ephemeral within the life cycle is not especially important.

In real-life systems, we expect some of these features to be found only approx-
imately. There will be some vagueness of boundaries, and perhaps overlap of
groups. I return to the role of approximation later. First I continue the analysis
of the idealized cases.

Introducing a more formal language, we can say that groups as found in Case
1 are equivalence classes of individuals. If groups are described by means of the
relation x is in the same group as y, defined on the lower-level particles, we find
that this relation is reflexive, symmetric, and transitive. It is an ‘equivalence
relation,’ that collects entities into equivalence classes.10

Once we have collected the particles into equivalence classes, we can describe
the system in terms of group-level fitnesses. The ‘Price equation’ can also be
used to give a partition of the overall covariance between particle character
and fitness into within-group and between-group terms (Price [1972]; Okasha
[2004], [2006]). For these formal operations, all we need is some means of
collecting the particles into equivalence classes. However, it is widely agreed that
this should not be done in an arbitrary way. Groupings should be recognized
on the basis of biologically real relationships between particles. That is to say,

9 As D. S. Wilson has emphasized, a single particle might be a member of several groups that
are recognized in the analysis of different selection processes. A person can be a member of a
family, a church, and a trade union, all at the same time, and these groups are not hierarchically
organized. But if we are analyzing competition between one of these sets of groups (churches,
for example) then it should be approximately true that each individual is a member of only one
of these collective entities—at least that there be many fewer churches than individuals. So my
claims here concern the analysis of a particular selection process, in which some particular form
of population structure is relevant. See also footnote 1.

10 The partitioning of a population into groups might occur several times over a generation, so an
individual’s group members might vary over time. Then the consequences of all these episodes of
group formation must be taken into account in a model. But any particular group in which an
individual finds itself, however temporarily, is an equivalence class.
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the equivalence relation—x is in the same group as y—is not supposed to be
primitive and unanalyzed; it is supposed to have a basis in some other relation,
or set of relations. If we can express the criterion determining groups in terms
of some single underlying relation between particles, then this must be an
equivalence relation, given the structure that it is supposed to explain.

It is common in the modeling literature to make the grouping according
to which individuals have an effect on other individuals’ (absolute) fitnesses
(Wilson [1980]; Uyenoyama and Feldman [1980]; Michod [1982]; Wade [1985];
Sober and Wilson [1998]).11 This sort of criterion works well in situations like
Case 1, where the fitness structure implies that each individual benefits from the
presence of all the altruistic individuals within its group but from no individual
outside it.12 This criterion for determining groups does not involve the use of
a single equivalence relation (because the relation is not reflexive), but it can
be modified so that it does. Essentially, criteria of this kind make a grouping
of individuals in terms of the relation, x has its fitness affected by the character
of y. In scenarios like my Case 1, this relation is reflexive, symmetric, and
transitive. So in cases like this we can simply look at this pattern of relations
between particles, and use these relations to partition the population into a set
of nonarbitrary groups around which lines can be drawn as shown in Figure 1.

Models are idealized, of course, and in real life a biological group need not
meet these requirements exactly. There might be some overlap between groups
(which is not possible with equivalence classes). But the relevant concept that is
being approximated in those cases is the concept of an equivalence class. Here
it is significant that the most popular mathematical framework for represent-
ing multilevel selection, the Price equation, requires that this condition hold
exactly.

Although the modeling tradition has often assumed a grouping of individuals
on the basis of effects of each individual on the fitness of all others, this criterion
can be problematic when applied to empirical cases. For example, it does not
apply to the celebrated cases of group selection involving eusocial insects. (This
point was made by an anonymous referee.) Here, the character of a sterile
worker affects the fitness of the queen but not vice versa, and the worker’s
character has no effect on its own (direct) fitness. So x has its fitness affected

11 Wade and Michod both endorse this definition from Uyenoyama and Feldman. ‘A group is the
smallest collection of individuals within a population such that the genotypic fitness calculated
within each group is not a (frequency dependent) function of the composition of any other
group’ (Uyenoyama and Feldman [1980], p. 395). More informally, Sober and Wilson ([1998])
say that a group is a collection of individuals that all influence each others’ fitness with respect
to a certain trait, but do not influence the fitness of those outside the group (p. 92). As the text
notes, it is important that fitness here be understood as absolute fitness, or the test becomes
trivialized.

12 I follow common practice in using a simple counterfactual test for the assessment of whether
one individual ‘affects’ another’s fitness, even though Rinard ([unpublished]) has shown that this
leads to trouble in some cases.
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by the character of y is not an equivalence relation that can be used directly
to form equivalence classes of individuals, even if we ignore such things as
aggressive encounters across colonies. An ant colony is still an equivalence class
of individuals (allowing some idealization), however, and what this case shows
is that some other relation defined on individuals must be used to establish the
grouping. Common ancestry and physical interaction are obviously appropriate
criteria here, but the modeler’s abstract notion of fitness-affecting interactions
might also be applied, albeit in more complex ways. If directed edges (lines with
arrows) are drawn between individuals x and y whenever x’s character affects
y’s fitness (in a sufficiently systematic manner), and then the arrows are erased
and indirect connections are also stipulated to be sufficient for connectedness,
we might be able to see an ant colony as a bounded network of direct and
indirect systematic effects of individual character on fitness. The relation x is
connected to y is then an equivalence relation that partitions the population
into separate colonies.

Aside from this complex case, it can be objected that in natural populations,
effects of one individual on another’s fitness are far more widely distributed
than the modelers’ criterion for group membership seems to suppose. Even if
we follow Wilson ([1980]) and relativize group membership to a trait of interest,
subtle effects of one individual on another’s fitness may extend across what may
seem to be obvious group boundaries. The practice of modelers may best be
understood by treating them as imposing an idealized binary distinction on a
more graded reality.13 In the remainder of this paper, I assume the availability
of a simple distinction favored by modelers, between individuals that do and
don’t affect each others’ absolute fitness. But I emphasize that this involves
idealization and also is not the only relation defined on individuals that can be
used to partition a population into equivalence classes.

I now introduce a second case. In Case 2 we find the same kind of lower-level
population of particles, but a different form of population structure. The
population is now arrayed on a two-dimensional lattice. As in the first case,
the life cycle includes the periodic formation and dissolution of the population
structure. Each generation begins with particles in a common ‘pool,’ from
which they settle in a two-dimensional array (perhaps randomly, perhaps not).
The reproduction step in the life cycle dissolves the array and generates a new
pool.

Selection occurs on the lattice, and the fitness of a particle is affected by
the characteristics of its neighbors—specifically, by its immediate four-member
N-S-E-W neighborhood or ‘Von Neumann neighborhood.’ Models of this kind

13 I am indebted to an anonymous referee and to Rasmus Winther for emphasizing this point to
me.
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Figure 2. A model with ephemeral two-dimensional spatial structure.

can also use the eight-member ‘Moore neighborhood’ that includes diagonal
neighbors, and there are other neighborhood concepts as well (Skyrms [2004]).

To make the case as similar to the first one as possible, suppose again that
each type does better in proportion to its number of A-type neighbors, but B
does better than A in any given neighborhood. So again, A is a kind of ‘altruist.’
(See the Appendix for further details.)

Case 1 with groups and Case 2 with neighborhoods are clearly quite similar.
And although they do not have as long a history in the literature, models with
two-dimensional spatial structure and interactions between neighbors have be-
come prominent in recent years—the models in (Alexander and Skyrms [1999])
and (Skyrms [2004]) are elegant examples. These models do not usually use an
‘ephemeral’ spatial lattice that is dissolved and reformed each generation. Usu-
ally, the spatial distribution persists and evolves across generations. I introduce
an ‘ephemeral’ lattice to make Case 1 and Case 2 as similar as possible; the
consequences of this will be discussed below.14

It is initially apparent that there are no group divisions in this population
when it is located on the lattice. That suggests that groups cannot function
as units of selection in such a case, even though this is a system in which
population structure matters to evolution. I will argue that this is indeed the
right conclusion to draw, but it will take some time to make the case, as some
other authors have sought to defend different views.

14 This life cycle is not merely of theoretical interest. It might apply quite well to some marine
invertebrates, like some cnidarians, that are dispersed in reproduction but then settle on a two-
dimensional surface and interact with neighbors.
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As in Case 1, this is a case where the fitness of each particle is affected not just
by its own character, but also by the characters of a subset of the other particles
in the population. In Case 1, this was used as the criterion for recognizing
groups in the population, via the fact that the relation x has its fitness affected
by the character of y was an equivalence relation on the population of particles.
The result is a partition into nonarbitrary groups that can be assigned group-
level fitnesses and/or analyzed with the covariance techniques of the Price
equation.

In Case 2, some parts of the same story can be told, but parts of it cannot.
Once again, we can describe the population in terms of a relation between
particles, x has its fitness affected by the character of y. But that is not an
equivalence relation in this case, because it involves neighborhood relations that
are not transitive. If the character of individual x affects the fitness of y, whose
character affects the fitness of z, this does not imply that x affects the fitness of
z. Consequently, this relation cannot be used, at least directly, to partition the
population into a number of equivalence classes. Each individual determines
a unique neighborhood; we have as many neighborhoods as individuals. The
only way to partition the population into a range of groups, in a way that yields
fewer groups than particles, is to do so arbitrarily.15 These groups could be of
any size and shape.

The most straightforward ways of describing a process of competition be-
tween groups, which were employed in Case 1, cannot be applied here. Dis-
regarding the option of arbitrary divisions, we cannot treat each particle’s
reproductive output as a contribution to the output of a single collective entity
that competes with others, in a higher-level selection process. Following the
definitions of groups used by the modelers cited earlier, we find there is no divi-
sion of the population into groups such that everyone inside each group affects
the fitness of everyone else inside, and no one inside any group has their fitness
affected by the character of an individual outside the group. The partitioning
of group-level and individual-level covariances between character and fitness
seen in the Price equation is not possible here. (Alternatives to Price will be
discussed below.)

It might be thought possible to treat each ‘focal particle plus its neighbors,’
a cross-shaped object, as a group that competes with other groups. Let us think
about what that would involve. There is the same number of these ‘groups’
in the system as there are particles. Any particle is a member of five different
groups of this kind (one for its own neighborhood, and one for each of its
neighbors, now taken as focal particles). All the nonfocal particles in any given

15 Sterelny, in response to Maynard Smith, briefly mentions this possibility in his work ([1996]),
without saying much for or against it. I don’t know of others who have considered or defended
the possibility explicitly.
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group have their fitness affected by the character of particles outside the group.
Indeed, a nonfocal particle within a given group has its fitness affected by the
focal member of the group and by three particles outside that group. So for
most of the groups that an individual is counted in, most of the interactions
that affect its fitness are with individuals outside the group.

So suppose we sought to represent evolution in such a case in terms of
between-group and within-group processes. In working out the between-group
process, each particle’s reproductive output would be quintuple-counted; it
would contribute to the fitness of five different groups. Each particle’s output
would also have five different roles in the within-group process as well. If we ask
whether some particle is doing well or badly in within-group competition, this
assessment of individual success is now made five different times against five
different (but overlapping) sets of competitors. Again, most of these compar-
isons are with particles that do not directly affect the fitness of the one we are
concerned with. It may be possible to use this convoluted method to calculate
the frequency for the A type in the next generation, but such an analysis seems
entirely at odds with the structure of the case being analyzed.16

Population structure matters in this second model; the distribution of neigh-
borhoods encountered by individuals affects what will happen. Random and
nonrandom rules for the allocation of particles to the lattice will have different
effects, for example (see the Appendix). But this population structure is not of
a kind that yields a set of nonarbitrary higher-level units that can reasonably be
said to compete, and that can be plausible bearers of fitnesses. To use an older
terminology, neighborhoods in this case cannot be seen as anything like a set
of higher-level ‘interactors’ (Hull [1980]; Lloyd [2001]) that interact with their
environment as wholes and cause the differential reproduction of lower-level
particles. Instead, this purely neighbor-based form of population structure is a
kind that is properly treated as context, as environment.17

This line of argument is not original to me. It is due, in its core, to John
Maynard Smith ([1964], [1976], [1987], [2002]). Maynard Smith tended to make
the argument informally and telegraphically, however, and did not introduce
the concept of equivalence classes as the crucial one. Maynard Smith often
presented the argument as a point about kin selection, and its relation to group
selection. He notes that if we have many trees of a single species in a forest, in
a two-dimensional array, neighbor-interactions may affect fitness, and do so in

16 As Ben Kerr pointed out to me, it is worth noting here that a simple ‘connectedness’ criterion
for group membership, introduced earlier to deal with social insects, will not help the attempt to
give a multilevel description of this case, because it would turn the whole population into a single
group, making group-level differences in fitness impossible.

17 This is not to say that no models with neighbor structure can have groups of the right kind. For
example, models with neighbor-interactions and local reproduction into regions of empty space
could give rise to fairly discrete nonarbitrary groups. The model in (Mitteldorf and Wilson [2000])
the potential to give rise to situations of that kind.
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a way modified by relatedness between nearby trees, even though there are no
discrete groups in the population. So not all cases of kin selection should be
seen as group selection. I have sharpened the argument up with the appeal to
equivalence classes in contrast with other relational structures, and I treat the
argument as having a more general application than the proper interpretation
of kin selection (as did Maynard Smith in [2002]).

Maynard Smith’s argument seems to have had limited impact. (Some rea-
sons for this will be discussed shortly.) But the phenomena he describes have
certainly been noted by others. In his original paper on group selection,
Wilson ([1975]) says that ‘trait groups’ in his sense are sometimes ‘discrete’
and sometimes ‘continuous.’ In the latter case, each individual is the center of
its own trait-group (p. 143). Wilson’s strategy was to give an explicit model
for the discrete case, and claim that the continuous case is essentially sim-
ilar. In his subsequent work, Wilson notes that the continuous case (as he
presents it) is hard to model analytically, and he uses computer simulations
to argue that the continuous case yields similar behavior to the discrete one,
and supports similar conclusions (Wilson [1977], [1980]; Mitteldorf and Wilson
[2000]).

So it is in the interpretation of the relationship between the ‘discrete’ and
‘continuous’ cases that I differ with Wilson. Wilson has not attempted to give
an actual model of the continuous case that utilizes a concept of group-level
fitness. Because of the additional mathematical complexity of the continuous
cases he discusses, Wilson studies them with simulations, and imports a verbal
description of the results that comes from the discrete case. But the description
of the continuous case in terms derived from the discrete one is, as I argued
above, very problematic.

This handling of the relations between the more tractable and intractable
cases is characteristic of the field. In fact, I suggest that people’s thinking about
these theoretical issues has been affected in interesting ways by methodological
factors. There is a great deal of work being done on spatially explicit models
at present.18 These spatial models do not usually generate analytical results
that apply over more than one generation; most of this work is simulation-
based. This is because in most of these models, the distribution of neigh-
borhoods encountered by each type co-evolves with population itself, and
does so in complex ways. These are treated as ‘viscous’ populations, to use
Hamilton’s term ([1964], [1975]). In these models there is usually no rule, akin
to a Hardy–Weinberg rule, that will generate a new population structure in a
regular way from the new generation of particles resulting from the previous

18 In addition to the works cited above, see (Nowak and May [1992]; Wilson et al. [1992]; Alexander
[2003]; Werfel and Bar-Yam [2004]; and Leiberman et al. [2005]). This work also connects to an
independent tradition of work on ‘cellular automata,’ as noted by Nowak and May.
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round of selection. An initially random distribution does not stay random for
long.

Most analytical work on structured populations assumes groups that are
represented as equivalence classes. And, I suggest, the theoretical principles that
people find compelling tend to be principles derived from the analytical work. If
one’s theoretical picture is derived from work that assumes equivalence classes,
then it can be natural and tempting to say that when population structure is
present and affects fitness, we must have more than one level of selection. My
argument is that to the extent that equivalence classes cannot be recognized
(at least approximately) in the population structure, this conclusion does not
follow.

Once we see the role of these methodological factors, it is interesting to re-
consider some famous earlier discussions. A key example is (Hamilton [1975]).
Hamilton’s paper is now often read as a dramatic endorsement of multilevel
selection (Sober and Wilson [1998]). Parts of the paper certainly have this char-
acter, especially his use of the Price equation. However, in a brief but crucial
passage Hamilton notes that his own preferred approach can handle cases in
which altruism can be favored without groups being present. The ‘inclusive fit-
ness’ approach, he says, ‘can deal with an ungrouped viscous population where,
owing to restricted migration, an individual’s normal neighbors and interac-
tants tend to be his genetical kindred.’ He then notes that even kinship itself
is not essential to the inclusive fitness approach as he conceives it. ‘[K]inship
should be considered just one way of getting positive regression of genotype in
the recipient [of altruistic behaviors], and . . . it is this positive regression that
is vitally necessary for altruism’ (all p. 337). This passage appears at the end
of a modeling treatment in which equivalence classes are assumed, and group
effects are analyzed via Price. This suggests that Hamilton may have treated the
multi-level framework as a convenient and elegant framework for representing
one particular manifestation of the phenomenon he was interested in, but not
as representing the whole or the essence of it.19

The main conclusion to be drawn from this section can be expressed as
follows. It is a necessary (not sufficient) condition on the existence of higher
levels of selection that there be a nonarbitrary partition of the lower-level

19 Perhaps some of Wilson’s earlier discussions ([1977], [1980]) can be read the same way (e.g.,
[1977], p. 183). It may seem there that Wilson has his eye on a general phenomenon that in some
cases can be compactly represented in terms of group selection, but not in all cases. However,
Wilson’s later discussions are more emphatic and unequivocal about the essential role of selection
on groups, and it is these that I take issue with. Here is an example: ‘For many years, genealogical
relatedness was the guiding light for biologists interested in the evolution of altruism. It has
become apparent more recently that variation among groups is the essential ingredient, which can
be accomplished by more than one mechanism.’ (emphasis added; Wilson and Dugatkin [1997],
pp. 348–9). See also (Sober and Wilson [1998], p. 57): ‘the theories that have been celebrated
as alternatives to group selection are nothing of the sort. They are different ways of viewing
evolution in multigroup populations.’
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population into equivalence classes, or at least an approximation to this con-
dition. Following the lead of the modelers discussed, I have focused on criteria
for recognizing groups that involve direct effects of one individual on the fitness
of another. But there are other criteria that would meet the formal criterion
defended here. There will also be ways of using several biological relations in
tandem to achieve a grouping of the right kind.

3 Objections and Replies

In this section I reply to two possible objections. Both try to give theoretical
reasons for the counterintuitive conclusion that group selection is operating in
the neighbor-structured model, Case 2.

First, in the preceding paragraphs I used the requirements associated with
Price’s covariance-based method for detecting group selection to support the
claim that neighbor-structured cases cannot be handled in multilevel terms.
Many other tools used in analyzing group selection require equivalence classes
as well.20 But one important alternative to the Price approach is ‘contextual
analysis’ (Damuth and Heisler [1988]; Okasha [2004], [2005]). Contextual anal-
ysis is based on multiple regression techniques; it assesses group selection by
measuring the partial regression of particle fitness on ‘group character,’ con-
trolling for particle character. The original applications of contextual analy-
sis to evolutionary questions assume the presence of equivalence classes, but
contextual analysis can easily be modified to deal with cases of neighbor-
hood structure, as opposed to group structure, as Okasha ([2005]) and Kerr
([in correspondence]) have noted. This can be done by substituting ‘neigh-
borhood character’ for ‘group character’; the presence of overlaps between
neighborhoods would not be a problem, as it is for Price. So an available—
perhaps superior—way of representing group selection does not require equiv-
alence classes.

Contextual analysis is clearly a useful tool. The harder question is what
exactly it measures. When taken as a test for group selection, contextual analysis
is taken by many to have a serious flaw. It recognizes a positive group-level term
in cases known as ‘soft selection,’ where there is frequency-dependent selection
within groups, but the groups themselves all have exactly the same productivity
(or, in some models, fixed productivities that may differ among themselves but
are not affected by the trait distributions within the groups).21 This shows that

20 As Okasha (personal communication) notes, this is true of a one-way ANOVA framework that
was often used before Price’s equation became popular. It is also true of the usual framework
used to analyze ‘interdemic’ forms of multilevel selection.

21 The observation was originally made by Goodnight et al. ([1992]), who do not regard it as
a decisive problem for contextual analysis. Rice ([2004]) regards it as showing that contextual
analysis does not test for higher-level selection in the usual sense (p. 325). Okasha ([2006]) regards
it as problematic but as something to be weighed against other advantages.
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contextual analysis is, at bottom, a test for detecting whether or not a given
kind of population structure matters to evolution. It is not a test for whether
or not some groups are fitter than others, or whether a certain trait is giving
some groups an advantage over others.

For some authors, including Okasha, contextual analysis remains a supe-
rior approach to the detection of group selection despite this shortcoming.22

If one is convinced that the core of the group selection problem consists in
distinguishing real from spurious effects of group structure, then it will be
natural to use contextual analysis rather than Price. This is a minority posi-
tion, however, as most theoreticians want to hold fast to the idea that group
selection does require differences in the reproductive output of groups (Wade
[1985]; Sober and Wilson [1998]; Rice [2004]). That point has usually been made
within a modeling framework in which a grouping of individuals into equiva-
lence classes was assumed. The question has not been assessed in a context in
which equivalence classes are absent, even in approximation, like my Case 2.
An explicit consideration of these purely neighbor-structured populations adds
further support to the majority position. This is because when we note the ap-
plicability of contextual analysis in a system with no group divisions at all, it
is clear how distant the term ‘group selection’ is from its antecedent meaning,
when one treats contextual analysis as testing for it. A person could say that
they explicitly intend to understand the phrase ‘group selection is acting’ to
mean the same as ‘population structure of some kind is making a difference
to evolutionary outcomes,’ but this is now very far indeed from the traditional
concepts of group-level advantage and group fitness.

The second objection I will discuss is closely related—largely a variant on
the same line of reasoning. In one of the most detailed and useful treatments of
neighbor-structured populations, Len Nunney ([1985]) suggests that we identify
group selection with ‘a process by which a trait spreads or is maintained in a
population because of the differential reproduction of genotypes that arises
from the positive association of individuals exhibiting the trait’ (p. 221). In
addition, Okasha ([2005]) uses Nunney’s analysis as the basis for a qualified
defense of a view of group selection based on a modified form of contextual
analysis, under which there is group selection if and only if there is a partial

The term ‘soft selection,’ as applied to this sort of population-structured evolution, originates
with Wallace ([1968]).

22 The main argument for regarding contextual analysis as superior is the fact that it does not
have a ‘false positive’ problem that the Price approach has. The Price approach recognizes group
selection in some cases where group-level fitness differences are apparently mere byproducts of
lower-level fitness differences. Concern with these byproduct problems goes back to Williams
([1966]) and has been discussed in detail by Sober ([1984]) and Nunney ([1985]). See Okasha
([2006]) for extensive discussion.
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regression of particle fitness on ‘neighborhood character.’23 My main reply to
the contextual analysis approach is above, but I will make some extra comments
about Nunney’s own definition.

Nunney’s proposed definition of ‘group selection’ is perhaps the most un-
usual one ever suggested. It does not even mention the role of groups, but
attributes any outcome to ‘group selection’ if it arises via positive correlation
between types. An immediate contrast can be drawn with the passage from
(Hamilton [1975]) quoted earlier, according to which correlation is indeed a
key theoretical concept, but correlated interaction is seen as possible within
both group-structured populations and ‘ungrouped viscous’ populations. The
underlying theoretical picture is similar, but the terms used to describe it are
different.24

Why does Nunney opt for his new and unusual meaning of ‘group selection?’
One reason is that he thinks there are good arguments against more familiar
analyses. But another reason is that Nunney is guiding his usage with the idea
that the contrast between ‘individual selection’ and ‘group selection’ should be
sharp, and the two kinds of selection should generate different evolutionary
outcomes. In particular, group selection is what maintains traits that are not
advantageous to individuals. Via his own work and others’, Nunney accepts the
conclusion that groups in an ordinary, pretheoretic sense need not be present for
altruism to be favored, provided there is correlated interaction. But he wants
to hold onto the idea that altruism is the product of something other than
individual selection. The result is a definition in which it is made impossible
in principle for group selection to operate if group formation is random, no
matter how discrete, cohesive, and ‘real’ the groups are, and no matter how
large the differences in group-level output.

It is difficult, and often unwise, to argue against an explicit stipulative def-
inition that is offered in full awareness of its unorthodoxy. So one possible
conclusion to draw here is that we should grant Nunney his concept, give it a
new label, and simply note where it converges and diverges from more ortho-
dox concepts. However, in this case I think a positive argument can be given
against some of the motivations that Nunney offers for his treatment of the
term. Nunney is guided, as I said, by a desire to retain a sharp contrast be-
tween the evolutionary roles of individual and group selection. I suggest that
this is a very weak argument. The apportioning of controversial phenomena
such as altruism between ‘group selection’ and ‘individual selection’ should

23 As it happens, Okasha ([2005]) defines the neighbor approach in a way that assumes discrete
groups are present. ‘An individual’s neighbours are defined as all the organisms in its group
except itself.’ But this could easily be modified.

24 For an especially useful discussion of the role of correlation per se, with other connections to
the philosophical literature, see (Skyrms [1994]). A view of altruism emphasizing correlation per
se rather than group structure was also sketched, and later abandoned, by (Sober [1992]). See
(Frank [1998]) for a detailed and relevant treatment with an emphasis on kin selection.
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be the upshot of a satisfactory analysis, not a prior constraint that imposes
a set of otherwise problematic definitions at the outset. In advance of a de-
tailed analysis, why are we so sure that a particular phenomenon should be
allocated to one explanatory factor or the other? And why are we so sure that
some processes could not qualify as both ‘individual’ and ‘group’ selection at
once?

Further, as Nunney’s own work shows, the concept of ‘individual advantage’
is itself less clear than is often supposed. Sometimes questions of individual
advantage are best addressed via a ‘mutation test’ that holds an individual’s
background context fixed and imagines a change in the individual’s character,
rather than comparing two individuals of different character within the same
group. But in other cases, such as that of an unstructured population, the simple
comparison of individuals in their common actual setting is appropriate. Kerr
and Godfrey-Smith ([2002]) have also argued that the concept of ‘individual
fitness’ has more variants than is usually supposed, even leaving aside the
controversial case of ‘marginal’ fitnesses. The lesson from this and other work
is that the concept of ‘individual selection,’ and its relatives, are somewhat
loose and ambiguous ones. Consequently, the motivation for Nunney’s unusual
definition of group selection is not at all compelling.

A more general conclusion can be drawn from this consideration of Nunney’s
framework. People sometimes object to the individualist description of
neighbor-structured populations because it has become clear that strong forms
of altruism can evolve in such populations. Surely altruism involves individual-
level disadvantage? Some treatments of altruism even make this true by defini-
tion. So how can a system with only ‘individual selection’ sustain altruism? My
response to this line of thought follows the reply to Nunney described in the
preeceding text. First, definitions of a phenomenon that constrain its possible
explanations by fiat should be avoided if possible, and here it is easy to avoid
them (Kerr et al. [2004]). Second, it might be true that some narrow existing
sense of ‘individual selection’ makes it impossible for individual selection to sus-
tain altruism. But the new spatially explicit models that have been cited in this
section are expanding our conception of what ‘individual selection’ is. Perhaps
it would be more accurate to say that these new models are making some of the
traditional contrasts in this area obsolete. We see this, in a way, in the growing
realization that correlated interaction is a crucial unifying concept in this area,
and one that has both individualist and nonindividualist aspects. We can ex-
pect a better framework to be developed as the models evolve. In the meantime,
it is a mistake to argue that because we ‘know’ that altruism is at odds with
individual selection, any model in which altruism evolves must include group
selection.

The next section connects these considerations to the literature on genic
selection.
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Figure 3. Two additional cases.

4 Particles on a Line

The model in ‘Case 2’ uses neighborhoods in two spatial dimensions. I now
introduce another contrasting pair of cases, one with equivalence classes and
one with neighbors in one spatial dimension.

Case 3 is like Case 1, except that particles form groups of two rather than
five. In Case 4, the particles occupy places on a one-dimensional environment
with a well-defined neighborhood relation but no group boundaries.

We suppose that each particle’s fitness in Case 4 is affected by its own
character and by the character of the neighbor to its right, but not by that
of the neighbor to its left. We have context-sensitive fitnesses, as before. And
once again, the kind of population structure that affects fitness does not yield
a division of the population into groups (equivalence classes) based solely on
those interactions. There are as many neighborhoods as there are particles in the
population. In Case 2 in the previous section, this was achieved by making the
relation between particles that affects their fitness symmetric but nontransitive.
That method is not possible in the case where each particle’s fitness is affected
by only one other particle, so in Case 4 the same result is achieved by making
the fitness-affecting relation asymmetric.

If we suppose there is a dissolving of the line at the end of each genera-
tion, and some fixed rule for the assortment of the new generation of par-
ticles into this one-dimensional environment, the resulting system is easy to
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describe mathematically (see the Appendix). Each type of particle is described
with two fitness parameters, representing its fitness in each of its two possible
neighborhoods. The settling of particles on the line may be either random or
nonrandom. If it is nonrandom, a formula for change must track not only the
overall frequencies of the types, but a set of conditional frequencies of neighbor-
hoods. These describe the frequency of A-type neighborhoods conditional on
the state of the focal particle whose neighborhood this is. These conditional
frequencies were discussed as an optional accounting tool for diploid genetic
models in (Godfrey-Smith and Lewontin [1993]). Here, they are more than op-
tional; there is no way to divide the line into pairs (equivalence classes) without
imposing arbitrary boundaries. So these conditional frequencies are by far the
most natural way to describe the role of this kind of population structure.

Let us return to Case 3, which has a population divided into groups of size
two, for a moment. As is well known, a trait-group model with groups of size
two can be interpreted as a population genetic model of a diploid population,
at one locus.25 If the mixed pairs AB have the highest fitness of the three kinds
of pairs, then it is a model of heterozygote advantage. The fitness of the A type
is context-dependent; it is higher in the company of B than it is with its own
type. It is possible to describe this case in terms that assign fitnesses only to
particles, using the same kind of accounting that was used for Case 4, the case
with particles on a line. But Case 3 can also, of course, be described in terms
of fitnesses that are assigned to pairs as wholes, and that is the usual practice.
Further, the case of heterozygote advantage is often seen as one demanding
analysis in terms of selection at the level of diploid genotype or whole organism,
not selection on the level of the lower-level alleles (Sober and Lewontin [1982];
Lloyd [2005]). That might be the right conclusion in this particular case, but
what is the argument behind it?

The comparison between Cases 3 and 4 heads off one possible line of ar-
gument. It cannot be that the lower-level description of Case 3 is bad because
of some general flaw in the form of description that uses ‘contextual fitness of
particles,’ or context-sensitive fitnesses at the lower level. This can be seen from
the fact that this form of description is the only reasonable approach in Case 4,
which is in many ways similar to Case 3. Further, it cannot be argued that this
kind of context-dependence of fitnesses always implies the existence of a higher
level of selection. Context-dependent fitnesses can exist when candidates for
higher-level selection do not exist in the system at all.

So some possible ways of objecting to a lower-level description of Case 3,
the case with groups of size two, are rejected. This does not show that in the
specific case of genes and genotypes, there are no problems with a gene’s eye

25 Here, a population that allows selfing.
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view. There may be special features associated with the details of that case, and
its particular causal structure, that tell against the low-level description.

With the aid of these points, we can see an important division within the
lines of argument developed by Sober and Wilson, Lloyd, and Sarkar against
various lower-level descriptions of processes that admit of multilevel represen-
tation. Sometimes these critics seem to be arguing for a highly general claim,
of something like the following form: ‘The kind of “contextual” information
used in lower-level descriptions of evolution in structured populations just is
information about higher-level units or levels of selection, differently ex-
pressed.’ That is the claim that my arguments here are intended to oppose.26

But on other occasions, the arguments made by these critics are based on the
causal details of particular crucial cases. Those claims, which must be assessed
separately, are not affected by the arguments given here.

Consider the case of (Lloyd [2005]). Lloyd’s main focus is the specific case
of genes and genotypes. Here, she thinks that a lower-level accounting using
context-sensitive allelic fitnesses amounts to a smuggling-in of higher-level
information. In the case of genes and genotypes, genes are collected together
into equivalence classes, at least in the context of the models she is discussing,
and their causal roles are tightly integrated in a particular way. Insofar as
Lloyd’s arguments are based on the contingencies of the case, they are not
affected by the points made here.27 The claim to be rejected, again, is the claim
that any systematic effect of context on fitness implies the presence of a higher
level unit of selection.

5 Conclusion

My primary aim in this paper has been to discuss the roles of some different
kinds of population structure for debates about multi-level selection. Most
models of structured populations that have inspired the formulation of general
theoretical principles assume a partition of the population into equivalence
classes. In this background, it has perhaps been natural to suspect that there
is some close link between population structure affecting fitness and selection
operating at a higher level. The case of population structures that do not
generate equivalence classes of lower-level particles shows that this cannot be
true in general. So any argument against lower-level descriptions of particular
cases (a gene’s eye view of heterozygote advantage, individualism about game
theory, etc.) must be based on something other than this general principle.

26 Perhaps Sarkar ([2008]) is the most explicit, in making a general claim of this kind.
27 I do not think Lloyd’s 2005 arguments suffice to show the inviability of a properly formulated

pluralist view, but that is a separate issue. For discussion of pluralist options, see (Waters [2005])
and (Kerr and Godfrey-Smith [2002]).
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Second, I have used a formal distinction between two kinds of relational
structures to give a necessary (not sufficient) condition on when population
structure can support a description in terms of higher levels of selection. My
proposal is that it is a necessary condition on the existence of higher levels of
selection that fitness-affecting interactions, or other biological features of the
system, partition the lower-level particles into equivalence classes. An approx-
imate meeting of this condition might often be enough, but this requirement is
far from trivial, as there are certainly cases (like my Cases 2 and 4) that do not
approximate it at all.

The general picture that follows from this proposal is as follows: the evo-
lution of a population is often dependent on the population’s embedding in
a ‘relational structure’ of some kind. That feature is seen in all the four cases
discussed here. But these structures come in many varieties. The language of
multilevel selection theory, when used literally, only applies when the relational
structure in question generates equivalence classes, or reasonable approxima-
tions to them. Other theoretical distinctions of this kind might be made as well,
by attending further to different kinds of relational structure.28

Lastly, I will summarize conclusions that can be drawn regarding the evo-
lution of altruism. One of the most important results from recent work on
neighbor-structured populations has been the demonstration of how various
kinds of cooperation and altruism can evolve in these models. There has some-
times been a temptation to assimilate these phenomena, at least informally,
to cases where there are groups present. Once we understand the special fea-
tures of neighbor-structured populations, and see them as important in their
own right, this assimilation becomes unnecessary and misleading. The focus
of work can then turn to the question of what difference it makes to evolu-
tion when a system contains genuine bounded groups, as opposed to other
kinds of population structure, and the question of how such collective entities
evolve. This is one aspect of the problem of explaining the ‘major transitions’ in
evolution.29

Appendix: Neighborhoods and Selection

This appendix gives a more formal description of some features of evolution
in neighbor-structured populations, with particular attention to altruism. It
draws on (Nunney [1985]) and unpublished work by Ben Kerr.

Fitness in neighbor-structured populations can be described with modified
versions of the α and β parameters used for group-structured populations in

28 Alexander’s recent work looks at some of these additional kinds of structure (e.g. [2003]). See
also (Leiberman et al. [2005]).

29 See (Buss [1987]; Maynard Smith and Szathmary [1995]; and Michod [1999]).
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(Kerr and Godfrey-Smith [2002]). Let αi be the (absolute) fitness of an A-type
individual with i neighbors of the A type, and βi be the fitness of a B-type
individual with i neighbors of the A type. Let p be the frequency of the A
type in the population and n the number of neighbors whose character affects
the fitness of any individual. The population is assumed to be infinitely large,
asexual, and with nonoverlapping generations.

Some standard definitions of altruism cannot be applied to a neighbor-
structured case, as they require a comparison of the fitnesses of two individuals
within a common group, and/or a comparison of group-level fitnesses in which
individuals outside a given group do not affect the fitnesses of those inside. The
most natural definition to use is a hybrid of the ‘focal-complement’ definition
and the ‘individual-centered’ definitions discussed in (Kerr et al. [2004]).

Neighbor altruism: A is an altruist iff,

αi < βi , for i ∈ {0, 1, 2, . . . n} (1)

αi < αi+1, for i ∈ {0, 1, 2, . . . n − 1} (2)

βi < βi+1, for i ∈ {0, 1, 2, . . . n − 1} (3)

Both types have higher fitness as a function of the number of A types among
their neighbors, and the B type has higher fitness than A in any given neigh-
borhood.

In group-structured models, a group frequency distribution is needed in or-
der to make evolutionary predictions. In the neighbor-structured cases, this
becomes a neighborhood frequency distribution. If individuals are distributed
on the space randomly, then the distribution of neighborhoods experienced
by both types is the same, and follows a binomial distribution with parame-
ters n and p. Writing the average fitness of the A type as WA, and that of B
type as WB:

WA =
n∑

i=0

(
n
i

)
pi (1 − p)n−i (αi ) (4)

WB =
n∑

i=0

(
n
i

)
pi (1 − p)n−i (βi ) (5)

After calculating mean fitness in the population W̄ as the frequency-weighted
average of these fitnesses, (pWA + (1 − p)WB), the frequency of the A type in
the next generation p′ can be calculated as pWA/W̄.

In the case of altruism, however, a simple result follows immediately. From
(4) and (5) we have:

WB − WA =
n∑

i=0

(
n
i

)
pi (1 − p)n−i (βi − αi ) (6)
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By condition (1) above, WB – WA > 0, or WB > WA. So under random neigh-
borhood formation, neighbor altruists have a lower average fitness regardless
of their frequency, and thus will go extinct.

In an ‘ephemeral’ neighbor-structured case, of the kind discussed in this
paper, a random distribution (or some other distribution) can be restored
each generation. In the ‘viscous’ populations that are discussed more often,
reproduction has local effects on the distribution of neighborhoods in the
next round, and an initially random distribution does not remain random for
long. The distribution of neighborhoods co-evolves with the population in a
complicated way.

In the remainder of this Appendix, I look at the role of nonrandom distri-
butions in ephemeral neighbor-structured populations.

Nunney ([1985]) represents nonrandom distributions of neighborhoods by
using a parameter F, derived from models of inbreeding (see also Hamilton
[1975]). If the overall frequencies of A and B are p and q, then pA and pB

are the frequencies of the A type experienced as neighbors by the A type and
by the B type, respectively. That is, pA can be thought of as the frequency of
A-type neighbors given the assumption of an A type in focal position. These
‘experienced’ frequencies are calculated by Nunney as follows:

pA = p + (1 − p)F (7)

pB = p − pF (8)

F ranges between 1 (complete clumping) and 0 (random distribution). Then
Nunney treats the distribution of neighborhoods for A as binomial with param-
eters pA and n; the distribution for B is binomial with parameters pB and n. If
these statistics can be assumed to characterize a distribution of neighborhoods,
then pA can be substituted for p in formula (4), and pB substituted for p in
formula (5), to yield average fitnesses of the two types. The ordinary frequency
p (not pA) is then used in the formulas for W̄ and p′, to yield a formula for
change, p′ = pWA/W̄ as before.

However, in many cases it is not straightforward to give a rule for filling the
space that will generate a distribution of neighborhoods with these features.
In a one-dimensional space with no loop, there is no problem. We can set
the first cell randomly (via p) and fill left to right via a first-order Markov
process. A transition matrix where Pi j is the probability of the next cell being
in state j given that the previous cell was in state i can be constructed as
follows: [

pA 1 − pA

pB 1 − pB

]
(9)

If all entries in the matrix are positive (which requires F < 1), the Markov
process will produce limiting global frequencies of p and (1 – p) for the A and B
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types. In Case 3 in the main text, n = 1 so the resulting formula for change is
simple.

p′ = p[pA α1 + (1 − pA) α0]/W̄, (10)

W̄ = p[pA α1 + (1 − pA) α0] + (1 − p)[pB β1 + (1 − pB) β0]

Complications arise for dimensions higher than one if we assume that the space
is closely packed with individuals as in Figure 2 above. (Nunney’s cases are pre-
sented differently from this.) Then it can be hard to give a procedure for filling
the space that will generate those experienced distributions of neighborhoods
for the two types. If we imagine starting with a random choice and using pA

and pB to choose the state of subsequent cells, we encounter the problem that
each cell’s state should be constrained by several of its neighbors, not just the
one filled previously. A simple way to construct a two-dimensional case that
fits something like Figure 2 and has a reasonably simple pattern of correlation
might be to suppose that each row begins separately with a random choice
and is filled left to right via application of pA and pB in a Markov process.
Then, with the relevant neighborhood as the 4-member Von Neumann neigh-
borhood, there will be correlation with respect to horizontal neighbors but
randomness with respect to vertical neighbors, leading to an overall positive
degree of correlation. Another possibility is a trial-and-error process of settling
and resettling. An initial filling of the lattice according to p and (1 – p) is fol-
lowed by a repeated process in which pairs of individuals are randomly chosen
and assessed for whether a switch of their places would result in an improved
fit to the desired overall distribution of neighborhoods.
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