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Formal methods developed for modeling levels of selection problems have
recently been applied to the investigation of major evolutionary transitions.
We discuss two new tools of this kind. Fitste "neatvariant test" can be
used to compare the causal adequacy of predictively equivalent
representations. Second, "statgiable gestalswitching” can be used to

gain a usafl dual perspective on evolutionary processes that involve both
higher andower level populations.

1. Introduction
The "major transitions" in evolution are a central topic in recent evolutionary theory, and
a rapidly emerging one in philosophy of biology. One consequence of this work has been
a transformation of debates abdtle "levels” or "units" of selection. Earlier treatments of
those problems assumed the existence of the familiar biological hierarchy, and asked
where in this hierarchy selection should be seen as operating. The evolutionary
transitions, however, are tipeocesses in which new levels of the familiar hierarchy came
into being (Buss [1987], Maynard Smith aBdathm#ryf1995], Michod [1999]). The
levels of selection debate has thus undergone its own transition, from asgaleiyonic
to a partlydiachronicorientation (Okasha [2005]). The new questions become: how do
evolutionary processes acting at the level of independent-lewelrentities produce
new biological individuals visible at a higher level? What marks the appearance of a
genuine highetevelindividual? Andbthe topic of this papé®how might such
"transitions in individuality" be best represented in formal models?

In earlier work we looked at the role of two alternative "perspectives” on a
particular kind of evolutionary model (Kerr ana@rey-Smith [2002a]). This is the
"trait group” mode(Wilson [1980]), which features a cycle of formation and dissolution
of groups, systematically related to the life cycle of the leeegl individuals or
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"particles” that make up the groups. Followmgradition of pluralist work (Dugatkin and
Reeve [1994], Sterelny [1996]), we showed that a model of this kind can be
parameterizedn two waysban individualist way, and a mulevel way. We gave a
"translation manual" that shows the mathematicalvedgmce of the two frameworks,
and argued fogestaltswitching pluralismThe two frameworks are formally equivalent,
but each perspective "packages” information differently and has different heuristic
features. There are positive advantages to switdbacl and forth between the two.

Here we look at extensions of that work, with a particular focus on evolutionary
transitions. The extension involves two tools. One is a test faathsal adequacyf a
representation. Suppose we have two descriptioagpodcess that are both predictively
adequate. Might one nonetheless be more faithful than the other to the causal structure of
the system? We argue that this question can be assessed by investigating how the two
alternative descriptions must be modifteddeal withnearvariantsof the original
process. The second is the demonstration of the possibility of a new kind of gestalt
switching. Rather than moving between alternative sets of parameters which represent the
fitnesses of entities that figure iretprocess, we now consider a switch between sets of
variablesthat track the frequencies of different entities. We argue that this second kind of

gestaltswitching has special relevance to evolutionary transitions.

2. Summary of our Modeling Framework
Ouw models assume a lel@vel population of "particles," of types A and B, which are
collected at some point in their life cycle into temporary groups of fixed initial gjze (
Reproduction is asexual and faithfully preserves a particle's type. After uefioydthe
groups dissolve, yielding a new pool of particles that start the cycle anew.

A model of change in such a system will feature equations that make use of three
ingredients (see also Table 1):
(i) a set ofstate variableghat represent the fregucies of particle types,
(i1) a fitness structureéhat specifies the fitness properties of individuals, groups, or both,
and
(i) a group frequency distributigrwhich specifies, for timstept, the frequencyi(t) of
groups containing members of thé type (and hecen-i members of the B type).



Model Component Description

state variables variables tracking the frequencies of different particle

fitness structure parameters giving fithesses of particles and/or group

groupfrequency distribution distribution describing the proportions of different grouy

Table 1:Basic Components of Models of Selection in GF&ipictured Populations

In our earlier work ([2002a]), "gestadtvitching" involves moving between two
ways of formulating the fitness structure, as it relates to the role of groups. We may use:
(i) A contextal treatment of group structure, yieldingiadividualistdescription of
natural selection. Here the A type is associated with a sétp@rameters, whergis
the absolute fitness of a particle of the A type in a group containing a tofadxicles
of the A type (including itself) and-i particles of the B type. For the B type we have a
corresponding set of'Oparameters, wherg gives the fitness of a B particle in a group
with i A particles.

(i) A collectivetreatment of group structure gyding amulti-level description of natural
selection Now a set of 8D parameters represent the combined output of various groups.
Specifically,# is the total productivity from a group containing-types. A set of @D
parameters specifies how thioguctivity is distributed between particle types. Hgre

is the proportion of4 that is of the A type.

Representations of change in such a system can be translated from one form to the
other without loss of information. For exampté=i/; + (n-i)"i; & =i!/i/(i! i+(n-i)")).
However, each parameterization "packages" information differently and involves
different applications of some core Darwinian concepts. The translation is not akin to a
metricto-Imperial conversion in which all theoretical concegetsin the same role. One
framework encourages us to think in terms of autonomous individuals interacting within

a social context; groups, in such a framework, are not bearers of fithess or competing

! In the terminology of Damuth and Heisler [1988], this is a rieltel representation in the
"MLS1" senseas opposed to "MLS2." The relations between MLS1 and MLS2 framewoltks wi
be discussed below.



entities. The other framework encourages us to recegnset of highelevel collectives
as entities that compete and differ in fitness.

3. The NearVariant Test for Causal Adequacy
The first tool we introduce is a test for how faithful a representation of a process is to the
causal structuref that procss, even where we assume the representation is predictively
adequate. We approach these questions via what we calvargant analysis.” This
framework is related to a family of recent approaches to causal questions that emphasize
manipulation and inte@ention (Pearl [2000], Woodward [2003]), and also to some non
interventionist counterfactual approaches (Lewis [2000]).

The core idea is as follows. Assume we have two formally adequate descriptions
of a system undergoing change, where each descri@itkages information differently.
To the extent that a description is faithful to the system's causal structure, the following
should hold: when we considenearvariant of the system under consideration, a
system of the same kind but with some slight ifncation, we will be able to construct a
representation of the new system via only slight modifications of the existing
representation. Most intuitively, if we consider a rearant that involves bbcalized
change to the first system's structure uiglat to be possible to construct an adequate
representation of the new system via a localized change to the old representation. In this
second sense, a "localized" change is a modification to only one parameter, or a small
number of parameters. We takéoitbe a mark of a poor causal representation of a system
when, upon considering a neariant of that system, we must chamgany or allof the
parameters in our representation.

More formally, imagine that system S ha® alternative parameterizatiofsich
as the! /" and# $fitness structures). Call these sets of paramé&arsdQ. We assume
these sets are of the same size, which is true for the case in questionvAriaeditest
can be applied as follows. Consider some small change to the sysfelimg system S*,
and then consider the changes that must be made to each representation to accommodate
this change and yield a dynamically sufficient representation of .iSoeplaced by



P*, andQ by Q*. If, to achieve this, we must chang®re paameters irP than we do in
Q, then parameterizatidR is more natural, with respect to that neariant?

A thorough analysis of a pair of parameterizations will consider several near
variants, to see if one parameterization is superior across aamigie of alterations. If
SO, we view it as a superior representation of the causal structure of the original system.
Essentially, we are combining the idea that a causally accurate representation is one in
which individual parameters map to distinct aspetthe system being modeled, with
the idea that imagined manipulations provide a way of assaying or testing for this
property. We see this as one way of making more explicit the distinction between
"mechanistic" and "phenomenological” models of a sysdmcases where both models
are intertranslatable. A model which maps parameters to distinct aspects of the system
being modeled may be seen as faithful to the "mechanistic" structure of the system, in
one reasonable sense of that term.

The neatvarianttest assumes what may be a philosophically contentious view
about the relationship between causation and localization. One way to defend such a view
is to again work within an interventionist approach to causation. A cause is something
that, when manipulatl, yields changes to other variables. The notion of manipulation or
intervention includes the idea that the factor in question be a reasonably localized feature
of the system. Local features whose manipulation gives rise to significant changes in
anothewariable are what John Campbell ([2007], [forthcoming]) calls "control variables"
for that effect. As Campbell argues, any macroscopic control variable will have some
microphysical basis. That does not disqualify it from being a cause. What does tend to
disqualify a macrdevel feature, perhaps in favor of a lowevel one, is a situation

where what is referred to as a mataeel "factor” is not reasonably localized but is

2 An anmymous referee raised the possibility that some-magants might be reflected in
changes to the functional form of some equation(s) in a modely thtirethe value of one or
more parameters. We agree that this may occur, and it raises some more complicated possibilities.
Suppose that two moddié; andM, are representations of S, and a particular imagined
modification to S can only be accommodated:bgnging the functional form of some equations
in M1 andM,, but in different ways, yieldiniyl ;* and M ,*. How do we determine which model
has more naturally accommodated the imagined change? We agree that this possibility, if
actualized, would raise a griem. We note however that often it will be possible texpress the
relation betwee ; andM * as one involving parameter values. For example, a linear
relationship is a special case of many other functional relationships, avitus parameters set
to zero.



highly distributed, or holistically realized, across many parts of the system. For
Campbell, the role of localization in the concept of cause derives from the local nature of
paradigm cases of interventions. Without endorsing an interventionist approach in
general, here, we do think that the interventionist view has described a geature of
causation and causal analysis.

It is important to understand what such a test is, and is not, supposed to do.
Clearly the outcome of such a test will depend on what is taken todxse @ariant of the
system under consideration. Two people m&agree about the right kinds of
perturbation to consider, and disagree so thoroughly that a "majority vote" over the
variants they consider relevant is either uninformative or impossible to apply fairly. The
assessment of what counts as a+vaaiant nay be influenced by causal assumptions
about the systerh.For example, it may be affected by assumptions about which parts can
change independently of each other. So we do not see this test as one that will extract
causal judgments from an entirely acdisssis. Rather, the testakes explicisome
elements of a largely tacit causal understanding of the system that we must have ahead of
time. This understanding will be conditioned by experience with actual patterns of
variation seen in the system, andalgth mechanistic knowledge, but may draw on
recognitional capacities that are hard to explicitly describe. Our test takes the
deliverances of this informal causal understanding as raw material, makes them more
precise, and reveals their further consegasn

We will illustrate the test with some simple cases. These are cases in which the
correct description seems obvious ahead of time; in one case a breakdown of a collective
into lowerlevel entities seems entirely misleading, in the other it seemsatdolyg Our
aim is to use these easy cases to show how thevagant test works, and then put it to
work on more difficult ones. The first easy case we call the case of "ppautites."”
Consider a bacterial cell. This cell is comprised of a leftdnadf a right half. Although it
may seem peculiar to do so, let us think of these two halves as two "particles" in a group

% For example, the choice of Cartesian versus polar coordinates to describe the position of an
organism in twedimensions could depend on how one supposes the organism in question moves.
If movement occurs along cardinal directions, a Cartesaaanpeterization is more natural. If
movement occurs as shifts around, toward, or away from the origin, a polar parameterization is
more natural. Two different researchers could employ distinct OnaturalO parameterizations
because each has imagined (omegised) different Opositional variantsO.
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that comprises the entire cell. If during a reproductive event the cell splits along its long
axis midpoint, then in a sense the [gdtrticle gives birth to two letialf particles, and the
right particle gives birth to two rightalf particles. (See Figure 1a.)

a. Bacterial fission  b. The system c. The near-variant d. Absence of interaction
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Figure 1: Pseudpatrticles (ac) and pseudgroups (df)

We can label the left half of the cell as A and the right half as B, and represent bacterial
fission from either a collective{$) or contextual {/") point of view (see Figure 1b).
Thinking contextually, the fitnesses of the left half (or left psepalticle) and of the

right half are both two/(1 = "1 = 2). Thinking collectively, the original grpwof two

particles gives rise to four particles,#&0= 4. Since left pseudparticles comprise a half

of every offspring cell produced, =! . We then consider a neagariant (Figure 1c).
Suppose the bacterial cell replicates at a faster rate, sovérahe same period of time,

four complete cells are produced. Thinking contextually, the left pseadicle then has



four offspring ( 1= 4) and the right has four offsprinty; & 4). Thinking collectively, the
number of offspring particles is no# = 8, but the split of this productivity between left
and right particles is stil; =! . So to accommodate the neariant, two parameters
change in the contextual perspective, whereas only a single parameter changes in the
collective perspective. At leawith respect to this variant, the collective parameterization
is more natural. This, of course, is what we would expect. The left and right half
"particles" here do not have any autonomy at all; there cannot be a group of two left
halves, or a right hakilone. Treating both halves as parts of a collective is far more
natural.

This case can be contrasted with one in which the contextual parameterization is
clearly superior; this is a case of "psewgtoups” (see Figure 1d; cases of this kind are
also dscussed in Sober [1984] and Nunney [1985]). Suppose that A types always have
three offspring and B types always have two, regardless of their context. Individuals also
tend to be found in the company of one other individual. There is no interaction between
them, but we can, if desired, see every individual as part of a pair.

If we think contextually about this case, thier= 3 for all relevant, and”; = 2
for all relevant. Thinking collectively, the ; parameters do vary according tdbecause
groups with more A's are always more productive (specific#llys 4,# = 5, and% =
6). The sole nottrivial $ parameter$;, is 3/5.

We then consider a negariant. suppose each B type produces only one
offspring, not two. We will not work through thetails, but it is easy to show that now
the contextual parameterization is judged superior, as it can accommodate the change
with fewer modifications (two rather than three). So as earlier informal discussions had
claimed regarding this case, the contekpamameterization (hence an individualist
description of selection) is superior.

We now look at a case that is more substantial, an example of meiotic drive. In
meiotic drive, one allele (A) gains an advantage over another (B) because the "driving"
allele is found in more than half of the gametes from heterozygote individuals
(individuals of genotype AB). Such systems are generally modeled with genotype fithess
differences and a drive parameter reflecting the advantage enjoyed by one allele in the
heteraygote during gamete formation. Suppose in such a case we have the following



genotype fitnesse®Vaa = 6; Wag = 5; Was = 4. The value of the driving alletg
reflecting the fraction of heterozygote matings in which A is the fertilizing allele, is 3/5.
Realers may note that this is essentially a rdeltel parameterization; the genotype
fithesses aré values and the drive parameteisThis is standard in population
genetics (for discussion see Lloyd [2005], Waters [2005]). One might now ask whether
this orthodox representation of the meiotic drive case has a causal rationale. Note first
that, as discussed earlier, it is possible to switch to a contextual parameterization, in
which alleles are the only bearers of fitness. In this tase/ ;= 3; "= "1 = 2. Note that
this is the same fitness structure seen in the psguug case (see Figure ,dlso
Okasha [2004] for a similar example). The psegdmp case seemed clearly to be one in
which the contextual parameterization is more natural. iitugive judgment was
vindicated by a nearariant analysis. One might think that this meiotic drive case must
betreated the same way as the psegdmup case, as the fithess parameters are all
identical. However, let us consider the neariant test irthe meiotic drive case. What
would be a reasonable variant? One possibility is a change that affects the rate of drive
and nothing else. This simultaneously changesnd "; in the contextual perspective, but
only $;in the collective parameterizatioihis is because the model here features a
simplezerosum relation between the productivity of alleles in the heterozygote. We can
compare this to a case where the advantage of one allele over another derives from
superior viability in a competitive inteshon between gametes after gamete formation,
outside the father's body, and in a scramble between gametes to fertilize the egg.
Spawning in fish is an example; allele differences may then affect the viability of
gametes in the water column. In that casagined perturbations to the viability of one
gamete type (e.g!,1) do not logically imply changes to the viability of the othé&) (
Consequently a contextual parameterization will be superior. So we see from
consideration of the meiotic drive casetttiee fitness structure alone does not determine
the most natural parameterization. Once we attend to the biological details, the near
variant test can sort instances of a single fitness structure into different causal categories.
We now apply this tesd a case that has been the focus of much controversy, the
case of competition between "altruists" and "selfish" individuals in agraitp model.
In a "trait group” model, groups form by aggregation of lelgeel individuals at a



certain stage in théé cycle, and the groups dissolve at another stage. When the

composition of these groups affects the fitness of the kevet entities, some see this as

a case of multievel selection (Wilson [1980], Sober and Wilson [1988]). Others see it as

involving individuatlevel selection only (Maynard Smith [1976], [1999]), and others still

have argued that it can be accurately described either way. In a model of this kind,

suppose that all individuals have a "baseline" absolute fitness of two offspringe but th

presence of aaltruist within a group allows other individuals in its group to have two

extra offspring each. The altruist incurs a cost of one offspring. Assuming growns3, of

the consequences of a single selective episode are given on the lefideaoidFigure 2.
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Figure 2: A traitgroup model of altruism

We then consider a neaariant. Suppose that A individuals provide a beneffoaf

offspring to every other member of their group, at a cosvobffspring to themselves.

This variant assumes that theraignear relationship between cost and benefit. When we
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adjust the two parameterizations to accommodate such a change, we find tupyadye
sensitive. In both cases, five out of six parameters must be changed. The result is a tie.
Not all neasrvarians to this system yield ties. If costs alone, or benefits alone, are
altered, then the contextual parameterization fares better. And if costs and benefits are
stipulated to be equal, the collective parameterization wins. Given this mixture of results,
and epecially the tie seen in the linear case and some other cases (not shown), it seems
that the neavariant test will not adjudicate between competing descriptions of a system
of this kind.
Some might find this conclusion frustrating, but we think it isrely appropriate.
We are dealing with a case where individuals are not constitutively tied to their groups
(as in the pseudparticles case), and do have "a life of their own." But they are also
parties to an important form of interaction that unitesnideviduals within each group.
The result is that the contextual and collective perspectives are found to be on at least
roughly equal footing. This provides further support for the "pluralist” interpretation of
trait-group casediscussed abovd his corlusion should be qualified by the recognition
that in some cases of trgtoup models, the biology of the system under discussion may
make some particular class of neariants relevant in a way that favors one
parameterization or the other. The gené&ratures of the traggroup structure, however,
do not favor one parameterization or the other. Further, the failure of theaniant test
in cases such as these may be informative in another way. Whenwanaat test fails
to discriminate alternate descriptions, and there is no missing empirical information
which might change the verdict, it indicategaatial entanglement of the londgvel
entities into highetevel collectives, with respect to their evolutionary role. This may be

a sign thathe system is on the road to an evolutionary transition.

4. StateVariable Gestalt-Switching

The second main idea of this paper is the possibility of a different kind of gestalt
switching. In the work discussed above, gestaitching involved two waysef looking
at thebearers of fitnessGroups can be seen as fitnbgsarers, or they can be seen as
aspects of the context experienced by individuals. But the “feuttl" description that
results from recognizing group fitness in this way is one in walictheaccountingis
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done in the currency of lowéevel particles. This applies to both the measurement of

fitness and the representation of change. A fit group, in these models, is one whose
constituent particles produce many new particles. In DamrmdiHaisler's terms, this

yields an "MLS1" model (Damuth and Heisler [1988]; Okasha [2006]). And in the

models above, the system is said to undergo evolutionary change when the frequencies of
different kinds of particles change. There is no need to trackeffroduction of groups

as units in a model of this kind.

We now look at how one can make a switch to thinking of groups not only as
fithnessbearers but as the entities that make ugptprilation that is treated in Darwinian
termsbthe population of dities in which there is variation, heredity, and differential
reproduction. We see this as involving two moves: (i) representing groupssitatine
variablesof the model, and (ii) using fithess parameters that represent reproduction of
groups by groupddere we will focus mostly on the first of these.

The new kind of gestaltwitching we will callstatevariable gestakswitching as
opposed to thparameter gestalswitchingabove. To see how the new kind of switch
works, we must attend to a featufetee earlier models not discussed in detail so far. In a
trait-group model of the type above, change is treated as a consequence dithesis a
structureand agroup frequency distributiorThis distribution is a set é{t) values,
specifying the frquency of groups containing exactlyndividuals of the A type. So in
these models, the frequencies of groups were not used to track changerdmteinput
into processes that yield change in particle frequencies. However, it would also be
possible tonrite equations for change that give the new frequencies of each type of
group, as a function of old frequencies of the groups and other parameters.

Schematically, iF; is a function predicting change in the frequency of groups
with i particles of theA type, the equations would look like this:

(2) fo(t+1) =F,(f,(t), f.(t), ...f, (1), fitness parametel

.i‘.l(t +1) = F(f, (1), f,(t), ...f. (1), fitness parameter
E
[+ D) =F.(f, (1), f,(1), ...f, (1), fitness parameters)
E

L@+ 1) =F, (f,(1), f,(2),...f, (1), fitness parameters)

12



The frequency of each kind of group at the next step is a function of the frequencies

of all the different kinds of groups at the previous tistep, along with parameters

describing the fitnesses of entities in the system. We will work through an example, using
a onelocus twoallele diploid population genetic model. In this case, the "particles” are
alleles (i.e., A and B), and group size is 2. One way of writing such a model is to give
equations for new allele frequencies as functions of old allele frequencies, fithess
parameters, and a rule describing how alleles combine into genotypes. Assuming random
mating and fair meiosis, the model yields equations of this kind:

(2) Wp'= VVAAP2 +W,5Pq

Wq'= WBBq2 +W,5Pq

HereWaa, Was, andWgg are absolute fithesses of genotypes. The state variplaedq,
are the frequencies of particles. The psms@gnify frequencies in the following
generationHowever, the model could be reworked so that the frequencies of ddoups
diploid genotype®become the state variables. Herg, andz are the frequencies of
AA, AB, and BB groups, respectively.

Wx'=W,, (x> +xy+y°/4)
(B) Wy'=W,(xp+2xz+y°/2+yz)

Wz'=W,,(y* 14+ yz+2%)

In Figure 3, we illustrate an example of this doeus diploid population genetic life

cycle (Fig. 3a), where the focus is either on genes (Fig. 3b) or genotypes (Fig. 3c).
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Figure 3: A diploid ondocus population genetic model, where black circles are A alteids

white circles are B alleles and rounded rectangles give diploid genotypes. (a) The life cycle
involves production of gametes, formation of zygotes, and viability selection. (b) A model given
by equation (2) focuses on how the allele frequencies irgeneration |§ andq) yield the allele
frequencies in the next generatiopO@nd qf. The state variables describe frequencies of
particles (c) A model given by equation (3) focuses on how genotype frequencies in one
generation X, y, andz) yield the gnotype frequencies in the next generatin® YO and z

Here, the state variables describe frequencigsafps

It will be possible, in the cas treated here so far, to Usand$ as the fithess parameters
in these equations (and also possible to/uaad”). But a full gestatswitch will
involve introducing a different kind of fitness parameter. We carfgiss the number of
offspringgroups produced by a group withA-typesbthis is an MLS2 type fithess
parameter, in the sense of Damuth and Heisler [1988] (who also #&é&al represent a
grouplevel fithess parameter for MLS2). Depending on the case, we will also need a
second set of fitess parameters, analogue$.tdhe relations betwee§ $, and% may
be complex, depending on the mode of reproduction seen in a particular model.

So we have a different type of gestltitching, between models that track
change in terms of particlesd those that track change at a higher level. This state
variable gestalswitching differs from parametric gestalvitching in an important way.
The! /" and#$ parameterizations were fully interchangeable. In the case of our
population genetic systerparticle frequencies are given by group frequencies but not
necessarily vice versa, and when the state variables are group frequencies the model has
higher dimensionality. We can then reasonably ask how a model with group frequencies
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as state variables wikarn its keep. When lfeycles are dominated by the group phase,
this representation may be more faithful to the biological details of the system, and when
fitness depends on the frequencies of other groups, a Heyletrepresentation may be
easierto formulate. An additional reason to consis&atevariablegestaltswitching is to
focus attention on issues of dynamic sufficiency. Models that are dynamically sufficient
include information required to predict change over many-ttaps’ When cosidering
statevariablegestaltswitching, the information needed for dynamic sufficiency (i.e.,

how particles form groups and how groups generate particles) becomes apparent.

One role for these choices is to see them as alternative representatiomgylef a si
case, highlighting different information. Okasha correctly notes ([2006], Chapter 4) that
the gestalswitching discussed in our earlier work only concerns a slayél description
of the MLS1 kind; here we have made some steps towards the extehtfiergestait
switching framework to the richer sense of midtiel selection seen in MLS2 models.

This switch between frameworks also has a special relation to a particular kind of
evolutionary process. Recent work has argued that the existencewflevel at which
bona fidereproducing individuals are found is the mark of at least many evolutionary
transitions (Buss [1987Michod [1999]). A transition often involves the appearance of a
new "Darwinian population([Godfrey-Smith [2009). A formal nodel might be seen as
recognizinga particular Darwinian population when it tracks evolutionary chagge
tracking changes in the frequencies of types in that population, or by tracking change in
the mean value of a characteristic of members of that papula

We suggest that exploring the relations between models with different state
variables might be useful when dealing with systems that $igadicancefor
evolutionary transitions. One such cas¥advox carteri(Michod, Nedelcu, and Roze
[2003], Michod [2005]). This organism is a colongaken algae that lives in ponds and
lakes as hollow balls of cells. Each colony may contain daughter colonies, and even
granddaughter colonies. Daughter colonies can form by asexual reproduction. The

* The relation between dynamically sufficient models and abstract statistical summaries of change
which are not dynamically sufficient is discusse&arr and GodfreySmith [2002b]
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colony itsdf is made up of "somatic" and "generative" cells. A generative cell undergoes
several mitotic divisions to produce the daughter colony, which invaginates and later
inverts inside the parent. Daughters are released when the parent colony dissolves. In this
system we see a complex relationship betweeraedl and colonylevel evolutionary
processes, and we suggest that one strategy for understanding it would be to employ
gestaltswitching with respect to both fithess parameters and state variablesir@ffspr
groups are born as wholes when the parent dies, so there is visibldey@up

reproduction here, despite the simplicity of the grtayel structures. Another empirical
system that suggests itself for this treatment is the slime Motdstylium disoideum

(Buss [1987], Strassmann and Queller [2007]).

5. Representing an Evolutionary Transition.
We conclude this part of the discussion by illustrating the roles that might be played by
the different parameters and modeling tools described in thes pafhe representation
of an evolutionary transition. The relations between stages of the transition and the tools
discussed is summarized in Table 2.

Imagine an initial state (stage 1) with a population comprising A and B patrticles
that interact with aighbors, but without forming discrete groups. Particle frequencies are
used as state variables in a model of such a system, and particle fithesses are represented
with / and” parameters. (There is not even a formal possibility of usingateneters?
and $ Maynard Smith [2002], Godfregmith [2008]). But suppose that interactions
become cooperative, and also organized into bounded groups (stage 2). We can now use
both#/$and! /" parameters.

Once the groups become cohesive, a-nadant test may faor a#'$
representation (stage 3). Then, as groups come to function more and more as units in their
own right, especially in reproduction, a switchstatevariablesmay be motivated (stage
4). We now describe evolution as change in a population of gr&up fithesses are still
expressed in terms of particles. So it may be sensible or (depending on the case)
necessary to switch to usiégfitness parameters. We are now tracking change in a
population of groups, and we explain change in terms of thereliffial rates of
reproductiorof groupsby groups (stage 5). Thus, as in Michod ([2005]) and Okasha
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([2005]), the relation between MLS1 and MLS2 models is understood in temporal,

beforeandafter, terms.

Stage | Biology Model Features

Stage 1 | Interactions among particlegithout | Particle state variables,
groups I']" fitness parameters

Stage 2 | Interactions in groups Particle state variables,

I'l" or A $fithesses

Stage 3 | More cohesive groups Particle state variables,
# $fitnesses via NV test?

Stage 4 | Groups function as biologicainits, | Group level state variables,
especially in reproduction # $fitnesses

Stage 5 | Groups function as biologicalnits, | Group level state variables,
especially in reproduction I fitnesses (plus others ageded).

Table 2: Transition stages and accompanying models

Then suppose that the gpkndent evolutionary role of the original particles is
entirely suppressed. Groups "breed true" when they produce new groups, and do so
asexually. Then we can treat groups as integrated entities whose composition with respect
to the original "particles" eed no longer be tracked/e have come full circle; the groups
now behave like a new set of particles. If we then become interested in ways in which
these highefevel units interact witleach otherwe would have reason to-irgroduce
the original! ; and”; parameterization at the higher level.

A key difference between this schematic pattern and actoiddi cases is that
integrated collectives in the actual world tend to engagexaalreproduction. That
complicates the relation between fitness patans, and prevents the simple return to an
!I']" representation imagined here as our final stage. Aataddt transitions tend not to

"come full circle” in the way our schematic one does.
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6. Conclusion

We have discussed two tools which have generatyuinen modeling levels of

selection problems, aralspecial relation to evolutionary transitions. The veaiant

test can be used to distinguish the causal accuracy of models even when they are
predictively equivalent. Some controversial cases canneasity decided by the near
variant test, and this may furnish part of an explanatiamhgfpeople have different
intuitions about these cases. The nemrant test may also cast light on why particular
modeling traditions gravitate towards particulargmaeterization® population genetics
embracing a collective treatment of groups of alleles; evolutionary game theory opting
for a contextual approach to interacting pairs. In populagemetic models, most
biologically plausible variations have consequesnfor all members of a group. This is
not so with gameheoretic models. Stateariable gestalt switching makes possible a
different kind of dual perspective on an evolving system. By noting the relations between
models using different stateariables, a well as different fithess parameters, we can
better understand what is involved in recognizing higher levels in the evolutionary
process, and better understand the transitions by which Heyletiindividuals and

populations arise.

Acknowledgments We are grateful to all the participants at the symposium at PSA 2006
on "Organisms Versus Models in the History of LlIfand to three anonymous referees,

for helpful comments.

References

Buss, L. [1987]The Evolution of IndividualityPrinceton: Princeton University Press.
Campbell, J. [2007]: 'An Interventionist Approach to Causation in Psychology’, in
Gopnik, A. and Schulz, L. (edsGausal Learning: Psychology, Philosophy and
Computaion, Oxford: Oxford University Press, pp. 5.

Campbell, J. [forthcoming]Causation in the Mind', presented as Alfred North
Whitehead Lectures, Harvard University, 2009.

18



Dugatkin, L. and Reeve, H. K. [1994]: 'Behavioral Ecology and Levels oft®eiec
Dissolving the Group Selection Controvergydvances in the Study of Behavi®s, pp.
101-133.

Damuth, J. and Heisler, L. [1988]: 'Different Formulations of Mudvel Selection’,
Biology and Philosophyg, pp. 40730.

GodfreySmith, P. [2008]:Varieties of Population Structure and the Levels of Selection’,
British Journal for the Philosophy of Sciené8, pp. 2550.

GodfreySmith, P. [2009]Darwinian Populations and Natural Selectjagdxford:
Oxford University Press.

Kerr, B. and Godfreydmith, P. [2002a]: 'Individualist and Multievel Perspectives on
Selection in Structured PopulatiorBiplogy and Philosophy.7, pp. 477517

Kerr, B. and Godfrestmith , P. [2002b]: 'On Price's Equation and Average Fitness',
Biology and Philosophyi7, pp. 551565.

Lloyd, E. A. [2005]:'Why the Gene Will Not ReturrPhilosophy of Scienc&2, pp.
287E8B10.

Lewis, D. K. [2000]: 'Causation As Influenceournal of Philosophy97, 182198.

Maynard Smith, J. [1976], 'Group SelectidDyarterly Review oBiology,51, pp. 277
283.

Maynard Smith, J1998]: 'The Origin of Altruism'Nature 393 pp. 639640.

Maynard Smith, J. [2002]: 'Commentary on Kerr and God8ayth',Biology and
Philosophy 17, pp. 523527.

Maynard Smith, J. and Szathmiry, E. [RP9 he Major Transitions in Evolution
Oxford: Oxford University Press.

Michod, R. [1999]Darwinian Dynamics: Evolutionary Transitions in Fitness and
Individuality, Princeton: Princeton University Press.

Michod, R. [2005]: 'On the Transfer of Fitnéssm the Cell to the Multicellular
Organism,Biology and Philosophy20, 967987.

Michod, R., Nedelcu, A. and Roze, D. [2003]: '‘Cooperation and Conflict in the Evolution

of Individuality IV. Conflict Mediation and Evolvability iolvox carterj' BioSyséems
69, pp. 95114.

19



Nunney, L. [1985]: 'Group Selection, Altruism, and StructuDesne Models American
Naturalist 126, pp. 21230.

Okasha, S. [2004]Multi-Level Selection, Covariance and Contextual Analy8sitish
Journal for the Philosophy @&cience55, pp. 481504.

Okasha, S. [2005]: 'MuHLevel Selection and the Major Transitions in Evolution,’
Philosophy of Scienc&?2, 10131025.

Okasha, S. [2006]the Levels of Selection Debatxford: Oxford University Press.
Pearl, J. [2000]Causlity, Cambridge: Cambridge University Press.
Sober, E. [1984]The Nature of Selectip€ambridge MA: MIT Press.

Sober, E. and Wilson, D. S. [1998]nto Others: The Evolution and Psychology of
Unselfish BehavigrCambridge MA: Harvard University Press.

Sterelny, K. [1996]: 'The Return of the Grouphilosophy of Scien¢é3, pp. 56284.

Strassmann, J.E. and Queller, D. C. [2007]: 'Altruism among Amoé&lzdaral History
116, pp. 2429

Waters, C. K. [2005]: 'Why Genic and Multevel Theories arelere to Stay,'
Philosophy of Scien¢c@&2, pp. 31E83.

Wilson, D. S. [1980]The Natural Selection of Populations and Communitéanlo
Park: Benjamin/Cummins.

Woodward, J. [2003Making Things HapperOxford: Oxford University Press.

20



